
USTX

Smart Contract Audit
Final Report

September 27, 2021



Introduction 3
About USTX 3
About ImmuneBytes 3

Documentation Details 3

Audit Process & Methodology 4

Audit Details 4

Audit Goals 5

Security Level References 5
Admin/Owner Privileges 6
High severity issues 6
Medium severity issues 6
Low severity issues 6

Unit Test 7

Coverage Report 7

Concluding Remarks 9

Disclaimer 9

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

2



Introduction

1. About USTX
The blockchain technology has proven a key development factor for the new economy, allowing for
safe, fast and low-cost transfer of value between individuals and companies. The USTX project aim is
to deploy a new utility token, based on smart contract technology, that has the growth potential of digital
currencies like BTC and the stability effect during bear market conditions typical of stablecoins. This
can be obtained by creating a bespoke AMM DEX, that dynamically manages the reserve to allow for
price increase in uptrend market while damping the price decrease during downtrend. The reserve is
completely transparent and certified by the underlying blockchain, removing the need for complex proof
of reserve methodologies. A target reserve level is always enforced by the smart contract to ensure the
long term stability of the system. The reserve liquidity is forever locked in the contract, meaning that the
owner of smart contract is not allowed to withdraw liquidity. The token and DEX contracts are open
source and deployed using the TRC20 standard over the TRON blockchain.

Visit https://ustx.io/ to know more.

2. About ImmuneBytes
ImmuneBytes is a security start-up to provide professional services in the blockchain space. The team
has hands-on experience in conducting smart contract audits, penetration testing, and security
consulting. ImmuneBytes’s security auditors have worked on various A-league projects and have a
great understanding of DeFi projects like AAVE, Compound, 0x Protocol, Uniswap, dydx.

The team has been able to secure 15+ blockchain projects by providing security services on different
frameworks. ImmuneBytes team helps start-up with a detailed analysis of the system ensuring security
and managing the overall project.

Visit http://immunebytes.com/ to know more about the services.

Documentation Details
The USTX team has provided the following doc for the purpose of audit:

1. https://ustx.io/wp-content/uploads/2021/09/USTX_WhitepaperV2.pdf

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

3

https://ustx.io/
http://immunebytes.com/
https://ustx.io/wp-content/uploads/2021/09/USTX_WhitepaperV2.pdf


Audit Process & Methodology
ImmuneBytes team has performed thorough testing of the project starting with analyzing the code design
patterns in which we reviewed the smart contract architecture to ensure it is structured and safe use of
third-party smart contracts and libraries.

Our team then performed a formal line-by-line inspection of the Smart Contract in order to find any potential
issues like Signature Replay Attacks, Unchecked External Calls, External Contract Referencing, Variable
Shadowing, Race conditions, Transaction-ordering dependence, timestamp dependence, DoS attacks, and
others.

In the Unit testing phase, we run unit tests written by the developer in order to verify the functions work as
intended. In Automated Testing, we tested the Smart Contract with our in-house developed tools to identify
vulnerabilities and security flaws.

The code was audited by a team of independent auditors which includes -
1. Testing the functionality of the Smart Contract to determine proper logic has been followed throughout.
2. Analyzing the complexity of the code by thorough, manual review of the code, line-by-line.
3. Deploying the code on testnet using multiple clients to run live tests.
4. Analyzing failure preparations to check how the Smart Contract performs in case of bugs and

vulnerabilities.
5. Checking whether all the libraries used in the code are on the latest version.
6. Analyzing the security of the on-chain data.

Audit Details
● Project Name: USTX
● Contracts Names: UpStableToken, UstxDEX, UstxProxy
● Languages: Solidity(Smart contract)
● Github commit hash for audit: 03b8f9c494a0518fd3a236f1c03af7ae49c64f9e
● Github commit hash for audit: d89949854a3980cd1dd966bdc04790b23540407d
● Platforms and Tools: Remix IDE, Truffle, Truffle Team, Ganache, Solhint, VScode, Contract Library,

Slither, SmartCheck.
● Mainnet Contract Address:

○ https://tronscan.io/#/contract/TMtyD8z93TLdMh4Swht8WyMx6R7LzqaH1y/code
○ https://tronscan.io/#/contract/TT7EHYyThW1G1WBndya7RQpNSXFHyzeHfx/code
○ https://tronscan.io/#/contract/TYX2iy3i3793YgKU5vqKxDnLpiBMSa5EdV/code

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

4

https://github.com/ustx/ustx-dex/tree/03b8f9c494a0518fd3a236f1c03af7ae49c64f9e
https://github.com/ustx/ustx-dex/tree/main/contracts/V2
https://tronscan.io/#/contract/TMtyD8z93TLdMh4Swht8WyMx6R7LzqaH1y/code
https://tronscan.io/#/contract/TT7EHYyThW1G1WBndya7RQpNSXFHyzeHfx/code
https://tronscan.io/#/contract/TYX2iy3i3793YgKU5vqKxDnLpiBMSa5EdV/code


Audit Goals
The focus of the audit was to verify that the smart contract system is secure, resilient, and working according to
its specifications. The audit activities can be grouped into the following three categories:

1. Security: Identifying security-related issues within each contract and within the system of contracts.
2. Sound Architecture: Evaluation of the architecture of this system through the lens of established smart

contract best practices and general software best practices.
3. Code Correctness and Quality: A full review of the contract source code. The primary areas of focus

include:
a. Correctness
b. Readability
c. Sections of code with high complexity
d. Quantity and quality of test coverage

Security Level References
Every issue in this report was assigned a severity level from the following:

Admin/Owner Privileges can be misused either intentionally or unintentionally.

High severity issues will bring problems and should be fixed.

Medium severity issues could potentially bring problems and should eventually be fixed.

Low severity issues are minor details and warnings that can remain unfixed but would be better fixed at some

point in the future.

Issues High Medium Low

Open - - -

Closed - - 2

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

5



Admin/Owner Privileges

The admin/owner of Ustx smart contracts has various privileges over the smart contracts. These privileges
can be misused either intentionally or unintentionally (in case the admin's private key gets hacked). We
assume that these extra rights will always be used appropriately. Some of these admin rights are listed below.

1. In the UpStableToken contract, the admin address can mint any amount of USTX tokens.
The UpStableToken contract contains a mint() function by which the admin accounts can mint any
number of USTX tokens to any address.

Recommendation:
Consider hardcoding predefined ranges or validations for input variables in privileged access functions.
Also, consider adding some governance for admin rights for smart contracts or use a multi-sig wallet as
admin/owner addresses.

High severity issues

No issues were found.

Medium severity issues

No issues were found.

Low severity issues

1. Unnecessary initialization to zero value.
In the constructor() of the AdminRole contract in AdminRole.sol, the _numAdmins state variable is
initialized to 0.

constructor (uint256 minAdmins) internal {

_numAdmins=0;

...

}

In Solidity the default value of uint256 datatype is 0. So there is no need to explicitly initialize the
_numAdmins variable to zero.

Recommendation:
Consider removing the above-shown statement from the constructor().

Amended (September 27th, 2021): The issue was fixed by the USTX team and is no longer present.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

6



2. Contract code size exceeds 24576 bytes.
The UstxDEX smart contract’s code size exceeds 24576 bytes (24 KB). This contract size limit was
introduced in Spurious Dragon. Contracts exceeding this limit become non-deployable on
testnet/mainnet without compiler optimization being enabled.

Recommendation:
Consider further dividing the contract into sub-contracts/libraries to reduce the code size.

Acknowledged (September 27th, 2021)

Unit Test
No unit tests were provided by the USTX team.

Recommendation:
Our team suggests that the developers should write extensive test cases for the contracts.

Coverage Report
Coverage report cannot be generated without unit test cases.

Recommendation:
We recommend 100% line and branch coverage for unit test cases.

Automated Auditing
Solhint Linting Violations
Solhint is an open-source project for linting solidity code, providing both security and style guide validations. It
integrates seamlessly into most mainstream IDEs. We used Solhint as a plugin within our VScode for this
analysis. Multiple Linting violations were detected by Solhint, it is recommended to use Solhint’s npm package
to lint the contracts.

Contract Library
Contract-library contains the most complete, high-level decompiled representation of all Solidity smart
contracts, with security analysis applied to them in real-time. We performed analysis using Contract Library on
the testnet address of the UpStableToken, UstxDEX and UstxProxy contracts used during manual testing:

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

7

https://www.npmjs.com/package/solhint


● UpStableToken: 0x8cE237CAc764F91D9f51F7D6383C77aE545CfAFA
● UstxDEX: 0x0c9d556057b23f35B5805ec93999283eD14a379D
● UstxProxy: 0xc4Cf14Db464EEf91e4EA398Bc06Ab5a1A5ea8ffF

It raises no major concern for the contracts.

Slither

Slither, an open-source static analysis framework. This tool provides rich information about Solidity smart
contracts and has critical properties. While Slither is built as a security-oriented static analysis framework, it is
also used to enhance the user’s understanding of smart contracts, assist in code reviews, and detect missing
optimizations.

It raises no major concern for the contracts.

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

8

https://contract-library.com/contracts/Kovan/0x8cE237CAc764F91D9f51F7D6383C77aE545CfAFA
https://contract-library.com/contracts/Kovan/0x0c9d556057b23f35B5805ec93999283eD14a379D
https://contract-library.com/contracts/Kovan/0xc4Cf14Db464EEf91e4EA398Bc06Ab5a1A5ea8ffF


Concluding Remarks
While conducting the audits of the USTX smart contracts, it was observed that the contracts contain only Low
severity issues.

Our auditors suggest that Low severity issues should be resolved by USTX developers. The recommendations
given will improve the operations of the smart contract.

Disclaimer
ImmuneBytes’s audit does not provide a security or correctness guarantee of the audited smart contract.
Securing smart contracts is a multistep process, therefore running a bug bounty program as a complement to
this audit is strongly recommended.

Our team does not endorse the USTX platform or its product nor this audit is investment advice.
Notes:

● Please make sure contracts deployed on the mainnet are the ones audited.
● Check for the code refactor by the team on critical issues.

ImmuneBytes

This audit does not provide a security or correctness guarantee of the audited smart contract. Securing smart contracts is a multistep process, therefore
running a bug bounty program as a complement to this audit is strongly recommended.

9


